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Probability of afternoon precipitation in
eastern United States and Mexico enhanced
by high evaporation
Kirsten L. Findell1*, Pierre Gentine2†, Benjamin R. Lintner3† and Christopher Kerr4

Moisture and heat fluxes from the land surface to the
atmosphere form a critical nexus between surface hydrology
and atmospheric processes, particularly those relevant to
precipitation. Although current theory suggests that soil
moisture generally has a positive impact on subsequent
precipitation, individual studies have shown support both for1–4

and against5–7 this positive feedback. Broad assessment of the
coupling between soil moisture and evapotranspiration, and
evapotranspiration and precipitation, has been limited by a
lack of large-scale observations. Quantification of the influence
of evapotranspiration on precipitation remains particularly
uncertain. Here, we develop and apply physically based,
objective metrics for quantifying the impacts of surface
evaporative and sensible heat fluxes on the frequency and
intensity of convective rainfall during summer, using North
American reanalysis data. We show that high evaporation
enhances the probability of afternoon rainfall east of the
Mississippi and in Mexico. Indeed, variations in surface
fluxes lead to changes in afternoon rainfall probability of
between 10 and 25% in these regions. The intensity of
rainfall, by contrast, is largely insensitive to surface fluxes.
We suggest that local surface fluxes represent an important
trigger for convective rainfall in the eastern United States and
Mexico during the summer, leading to a positive evaporation–
precipitation feedback.

Observational studies of soil moisture–rainfall interactions
generally suffer from insufficient data both spatially and temporally,
particularly for soil moisture (SM) and surface turbulent fluxes. In
models, the strength of the SM-rainfall feedback depends on model
parameterizations and grid resolution8–10. The metrics introduced
in the present study constitute powerful diagnostic tools for model
intercomparison of simulated land–atmosphere coupling, and for
validation of fundamental physical processes incorporated in next-
generation earth systemmodels.

Previous work11 identified three necessary conditions for an
initial SM anomaly to impact summertime precipitation: (1) the
initial SM anomaly must be large; (2) evaporation must be strongly
sensitive to SM; and (3) precipitation must be strongly sensitive
to evaporation. The first element emphasizes areas with large SM
variability, whereas the latter elements emphasize the connection
between the land surface and the atmospheric boundary layer
(ABL), and the connection between the ABL and overlying free
troposphere11. This study emphasizes (3): we demonstrate when
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andwhere theNorth American Regional Reanalysis dataset (NARR;
ref. 12) manifests strong precipitation sensitivity to the relative
strengths of latent and sensible heat fluxes from the land surface.
The link between surface evapotranspiration (ET) and subsequent
precipitation is recognized as a critical and highly uncertain step in
the SM–precipitation feedback loop13.

The NARR dataset comprises dynamically consistent three-
hourly gridded fields from 1979 to 2003 at ∼30 km grid spacing12,
providing an extensive testbed for probingmechanistic connections
between surface fluxes and subsequent precipitation. NARR
is derived from a data assimilation system with precipitation
and other near-surface observations assimilated hourly, and
atmospheric profiles of temperature, winds, and moisture from
rawinsondes and dropsondes assimilated every three hours. Studies
documenting the strengths and weaknesses of NARR are discussed
in the Supplementary Information. These studies demonstrate
that NARR is an improvement over earlier, global reanalysis
projects and that it can successfully be used in a wide array of
hydrometeorological studies.

The strengths of NARR include its assimilation of precipitation
observations and its high spatio-temporal resolution. Precipitation
assimilation constrains the diurnal cycle of precipitation, which is
poorly captured by current convection schemes; moreover, assim-
ilation of near-surface humidity constrains latent and sensible heat
flux partitioning14, which is often poorly captured by land surface
models. Whereas data density and to a lesser extent frequency
are comparable for the continental United States (CONUS) and
Mexico, the quality and quantity of observations for Canada are
limited; we limit consideration here to data south of 50◦N.

Our analysis uses daily gridpoint values of the following
quantities: earlymorning convective triggering potential (CTP) and
low-level humidity deficit (HIlow) to assess the large-scale potential
for convective development15; before-noon evaporative fraction
(EF= λE/(H + λE), with λE and H denoting latent and sensible
heating, respectively) to assess surface turbulent flux partitioning;
and rainfall fromnoon–6 pm.Temporal offsetting ofmeasurements
helps to isolate EF forcing of subsequent precipitation. Further
data filtering (described below) removes large-scale influences
potentially affecting both EF and precipitation.

Not surprisingly, the likelihood of summertime afternoon
rainfall is higher in the humid regions of the NARR domain:
Mexico and the southeastern United States show the highest
afternoon rainfall probabilities (Supplementary Fig. S1). These
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Figure 1 | The sensitivity of convective triggering and rainfall depth to evaporative fraction. a, Triggering feedback strength (TFS; units of probability of
afternoon (noon-6 pm) rain) and b, amplification feedback strength (AFS; units of millimetres of afternoon rain) during June–July–August (JJA). Mean
values from 50 bootstrap samples. Shading indicates the mean of the 50 samples is significantly different from zero according to a two-sided t-test at the
95% significance level. This threshold is surpassed by most grid cells because of consistency between the bootstrap samples owing to the large sample
size of both the original dataset and each sample member.

regions also show a positive EF-precipitation relationship: higher
EF, generally linked to wetter soils and increased vegetation
coverage16, is associated with a higher likelihood of afternoon
rainfall (Supplementary Fig. S1).

The EF-dependence of rainfall is assessed through twomeasures:
a triggering feedback strength (TFS), reflecting how afternoon
rainfall frequency changes with EF, and an amplification feedback
strength (AFS), reflecting how accumulated rainfall varies with EF
when afternoon rainfall occurs. TFS is given by

TFS= σEF
∂0(r)
∂EF

(1)

where σEF is the standard deviation of EF. We use 0 to denote event
probabilities; 0(r) then denotes the probability of afternoon rain
exceeding a 1mm threshold. AFS is defined analogously, replacing
0(r) with E[r], the expected value of afternoon rainfall amount.
(Details are provided in equations (2)–(5) of theMethods section.)

To mitigate the impact of large-scale synoptic systems and
constrain the analysis to days when local surface turbulent fluxes
are most conducive to subsequent convective development, two
restrictions are applied to the data included in TFS. First, only days
without rainfall between 6 am and noon are retained, limiting the
influence from long-duration stratiform rainfall events17. Second,
days with negative CTP are excluded as early morning CTP < 0
conditions have been shown to be typically too stable to support
convection15; afternoon rainfall occurring on such days is assumed
to arise from synoptic-scale systems. These restrictions remove
10–30% of days in the eastern United States and 5–10% in
the western United States and northern Mexico (Supplementary
Fig. S2). Although these restrictions do not guarantee removal
of all synoptically driven days, they diminish the influence of
synoptic systems. The AFS calculation is further restricted to days
with afternoon rain (Supplementary Fig. S2), because TFS already
accounts for rain-free afternoons. Finally, 50 bootstrap samples
(with replacement)18 are created from the available 2,300 days to
assess statistical significance.

The TFS map (Fig. 1a) shows that over the eastern United
States and Mexico, higher EF leads to increased afternoon rainfall
probabilities. This map is largely consistent with Findell and
Eltahir19. Although the earlier study was limited in scope, using
station radiosondes in a 1D boundary layer model, simulations

were performed with very dry or wet soils to isolate land surface
forcing. Consistency with Findell and Eltahir, in the area they
deemed a positive feedback region, supports our finding that surface
flux partitioning plays an integral role in afternoon convective
triggering in the eastern United States. Independent results from
the Atmospheric RadiationMeasurement Climate Research Facility
Southern Great Plains site (97.5◦W, 36.5◦N; ref. 20) also show
consistency with our near-zero TFS signal at this location.

Figure 1a indicates that EF variability explains 10–20% of
the observed variability in afternoon convection probability over
most of the eastern United States and Mexico, with peaks over
25% in Florida. This positive land–atmosphere feedback can
perpetuate wet or dry extremes by modulating the frequency
of afternoon convection. Higher EF, generally associated with
higher SM, enhances the probability of daily afternoon rainfall
triggering by up to 25%.

In contrast to TFS, the AFS map (Fig. 1b) indicates that, once
triggered, the afternoon rainfall intensity is rather insensitive to EF.
Where TFS is highest, higher EF may lead to depth increases of
<1mm(typically<10%ofmean afternoon rainfall, Supplementary
Fig. S2). Figure 1 underscores the importance of land surface and
ABL processes for convective triggering in some regions while
indicating that rainfall amounts are largely independent of local
surfacemoisture conditions in all but the wettest regions.

Thus, in Mexico and the eastern United States, we argue
that the positive EF-precipitation feedback occurs primarily
through modification of afternoon rainfall frequency. West of
the Mississippi, the land surface exerts little control on local
afternoon convection. In other words, where surface moisture is
not strictly limited, surface turbulent flux partitioning can shift the
local atmosphere from non-convecting to convecting, but other
controls, for example, free tropospheric moisture content or large-
scale moisture convergence, largely determine how much rainfall
occurs, consistent with independent studies21. The dichotomy
between surface controls on convective frequency and intensity
constitutes a fundamental advancement in our understanding of
land–atmosphere interactions and is consistent with findings from
small-scale studies in the USmidwest and Europe3,17,22.

To address whether our results reflect external factors that
might impact both morning EF and subsequent precipitation
we analysed rainfall for the three subsequent six-hourly peri-
ods after the noon–6 pm period considered previously. Figure 2
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Figure 2 | The sensitivity of TFS and AFS to rainfall time period. TFS (top row) and AFS (bottom row) values calculated using rainfall from subsequent
time periods: 6 pm—midnight (left column), midnight—6 am (middle column), and 6 am—noon (right column). The middle and right columns use rainfall
from the day following the recorded EF value. Shading details as in Fig. 1.
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Figure 3 |Normalized, non-dimensional versions of sensitivity maps. a, normTFS and b, normAFS. Shading details as in Fig. 1.

shows that the TFS signal persists, but is muted from 6 pm to
midnight, and drops off rapidly thereafter, with only small ar-
eas exceeding 2.5% after 6 am, indicating that persistent large-
scale factors do not drive the Fig. 1 results. AFS remains noisy
throughout these subsequent intervals, reflecting the difficulty
of distinguishing AFS signal from noise. Additionally, we sub-
divided the dataset into ten El Niño and seven La Niña years
(see Supplementary Information). Results with these subsamples
show that TFS and AFS are insensitive to tropical SST forcing
(Supplementary Fig. S3).

The ground-breaking analysis of Koster et al.23 quantified feed-
back strength in terms of multi-model mean summertime pre-
cipitation variability differences of simulations with and without
interactive SM. Their central Great Plains ‘hotspot’ clearly differs
from the surface flux triggering hotspot east of the Mississippi
evident in our Fig. 1a. The different feedback measures considered
(EF versus deep SM) partly explain the different locations, as the
Koster et al. hotspots include not only the precipitation sensitivity
to evapotranspiration considered here, but also evapotranspiration

sensitivity to SM. There were tremendous inter-model differences
in the assessment of the SM-precipitation feedback strength in
the Koster et al. results, tied to model-specific relationships be-
tween SM and evapotranspiration8 and possibly also the details
of convection schemes and cloud-radiative feedbacks24. A related
set of experiments with all prognostic land variables (SM and
temperature at all levels, canopy interception reservoir content,
various snow-related quantities)25 prescribed may be a closer
analogue to our work because EF is substantially influenced by
surface SM and canopy interception; these experiments manifest
a larger signal in the eastern United States, albeit with substantial
intermodel differences.

To better understand the relative magnitudes of the triggering
and amplification metrics, versions of the TFS and AFS with the
central derivatives normalized by the ratio of mean EF (EF) tomean
rainfall (0(r) or E[r]) are considered (normTFS and normAFS,
see equations (6) and (7) in Methods). Differences between TFS,
with derivatives scaled by σEF, (Fig. 1a) and normTFS (Fig. 3a)
are largest in Mexico, where 0(r) is highest. The functional
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Figure 4 | Functional relationships between normalized metrics and mean
evaporative fraction. a, normTFS and b, normAFS as a function of EF (solid
blue line) determined from all grid points south of 50◦ N in each of 50
bootstrap samples. Shaded areas indicate minimum and maximum values
of the fifth and ninety–fifth percentile curves from these bootstrap samples;
dashed blue lines are the mean±1σ . The black line indicates the mean
number of observations per bin (100 bins with1EF=0.01) over the
bootstrap samples. Shading is halted where the mean number of
observations/bin<5. The pdf of mean number of observations/bin differs
in the two plots because only days with afternoon rainfall are included in
the AFS calculation.

relationship of normTFS to EF is nonlinear but relatively smooth
(Fig. 4a). Four regimes are evident: for EF< 0.2, normTFS is highly
variable with a near-zero mean; for 0.2 < EF < 0.5, normTFS
shows little change with EF; for 0.5< EF< 0.7, normTFS shows
a slight positive slope with respect to EF; and for EF > 0.7,
normTFS increases dramatically with EF. The only instances of
negative TFS values are localized to the area north of the Gulf
of California (Fig. 3a), reminiscent of a similarly located negative
feedback region seen in earlier work19. For EF in the range of

0.2–0.8, almost the entire envelope of normTFS values in 50
bootstrap samples is positive, suggesting that all but the driest
regions consistently exhibit a slight positive triggering feedback
between daytime EF and subsequent convective rainfall. The
EF-dependence is qualitatively consistent with studies based on
idealized coupled boundary layer-free troposphere convecting
column models26. These results further indicate that in high-
EF regimes, typically areas with more dense vegetation and
wetter soils, the land surface and atmosphere are tightly coupled.
Consequently, wet initial surface conditions are more likely to
persist by engendering a greater likelihood of afternoon convection.
The results for normAFS demonstrate that the triggering effect
is far stronger than the amplification effect at all locations
(Figs 3b and Fig. 4b). The functional relationships depicted in
Fig. 4 represent powerful diagnostics for model assessment and
process-based understanding of surface energy flux partitioning
controls on precipitation.

The TFS and AFS metrics estimated from the NARR dataset
lead to two important conclusions; TFS indicates substantial lo-
cal turbulent surface flux partitioning control on the frequency
of afternoon convection in areas not strictly limited by surface
moisture, whereas AFS indicates a small (<1mm-scale) impact
on convective rainfall amounts. The distinction between surface
flux impacts on rainfall frequency and intensity is relevant to
model development. Models often simulate reasonable rainfall
climatologies despite incorrect frequency and intensity statistics:
many exhibit persistent low-intensity events rather than more
intermittent, higher intensity ones27. Improper model represen-
tation of land–atmosphere coupling may account for some of
these deficiencies over land; the metrics introduced here provide
a tool for validating modelled land–atmosphere coupling. This
is particularly valuable for improving forecasts of hydroclimatic
extremes, comparing land–atmosphere interactions across models,
and refining model representations of coupled land–atmosphere
processes. Such process-based knowledge is critical for improv-
ing future climate prediction capability, for which stationary
statistical assumptions based on past or current climate are
questionable28 and areas of strong land–atmosphere coupling
are likely to change29.

Methods
For each grid point, 2,300 summertime days are available for analysis (25 years,
92 days in June–July–August, JJA). For each day, the three-hourly data are locally
positioned to determine the data points closest to local 3 am,6 am,...9 pm, and
midnight. Each data point contains accumulated rainfall depths over the 3-h
period, or average values over the 3-h period for other variables. Early morning
atmospheric conditions are assessed through two quantities used in previous
work15: the convective triggering potential (CTP) and the low-level humidity
deficit (HIlow). The CTP is a measure of the energy available for convection in the
area of the atmosphere 100–300 hPa above the land surface, which is the pressure
interval likely to be critical to the development of the daytime boundary layer.HIlow
is defined as the sum of the dew-point depressions 50 and 150 hPa above the land
surface. CTP and HIlow are determined from the 6 am observation, capturing the
state of the low-level atmosphere before sunrise (from 3 to 6 am).

The energy partitioning at the land surface is assessed through the
use of the evaporative fraction (EF), defined as the ratio of latent heat flux
(evapotranspiration), λE , to sensible (H ) and latent heat fluxes at the surface:
EF= λE/(H+λE). We use EF because it has been shown to be relatively constant
during daytime hours, and is little affected by turbulence variability30. EF values are
calculated for the noontime observation (9 am–noon). Afternoon rainfall is defined
over the 6-h period following the noontime EF observation.

The triggering feedback strength (TFS) is a measure of how the probability
of afternoon rainfall, 0(r), where r is afternoon rain, changes with EF. Rainfall is
‘triggered’ when afternoon rainfall exceeds a small threshold value, currently set
to 1mm. The results show little qualitative sensitivity to a doubling or halving of
this threshold: the location and the relative strength of the high TFS signal does
not change, although the quantitative strength of the TFS is slightly impacted by
these variations. The amplification feedback strength (AFS) seems to be noisier
at lower threshold values.

We treat EF, HIlow and CTP as discrete random variables, with the parameter
space of these variables divided into discrete bins. The CTP and HIlow thresholds
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for these bins are pre-defined so that results can be interpreted in the context of
the CTP–HIlow framework. The EF bins, however, are specific to each grid point:
they are determined by splitting the observed range of EF data into 10 bins with an
equal number of data points in each bin. For each CTP–HIlow pair, the probability
of afternoon rainfall for each EF bin is expressed as:

0(r |x,y,ζ )
1
=0(r |x ≤CTP< x+1x,y ≤HI < y+1y,ζ ≤ EF<ζ +1ζ ) (2)

We use the more concise notation format on the left of the above equation in
subsequent equations. We take advantage of properties of conditional probabilities
to calculate the dependence of afternoon rainfall on EF, considering all CTP–HIlow
pairs within each EF bin:

∂0(r)
∂EF

=
∂

∂EF

ζmax∑
ζ=1

0(r,ζ )

=
∂

∂EF

ζmax∑
ζ=1

0(r |ζ )0(ζ )

=
∂

∂EF

xmax∑
x=1

ymax∑
y=1

ζmax∑
ζ=1

0(r,x,y|ζ )0(ζ )

=

xmax∑
x=1

ymax∑
y=1

ζmax∑
ζ=1

∂

∂EF
[
0(r |x,y,ζ )0(x,y|ζ )0(ζ )

]

=

xmax∑
x=1

ymax∑
y=1

ζmax∑
ζ=1


0(x,y|ζ )0(ζ )

∂

∂EF
0(r |x,y,ζ )+0(r |x,y,ζ )

×

[
0(x,y|ζ )

∂

∂EF
0(ζ )+0(ζ )

∂

∂EF
0(x,y|ζ )

]


(3)

To obtain TFS, this derivative is multiplied by σEF, where σEF is the standard
deviation of EF (see equation (1)). The TFS calculation includes only those days
with no rainfall between 6 am and noon andwith positive CTP values.

Furthermore, we wish to consider how the expected value of rainfall
changes with EF, considering all CTP–HIlow pairs. Using a property of the
expected value of a positive function, we can represent the expected value in
terms of probabilities:

∂E[R]
∂EF

=
∂

∂EF

 ∞∫
r≥0

0(R≥ r) dr


=

∂

∂EF

 ζmax∑
ζ=1

∞∫
r≥0

0(R≥ r |ζ )0(ζ )dr


=

∂

∂EF

 ∞∫
r≥0

xmax∑
x=1

ymax∑
y=1

ζmax∑
ζ=1

0(R≥ r,x,y|ζ )0(ζ ) dr


=

xmax∑
x=1

ymax∑
y=1

ζmax∑
ζ=1

∂

∂EF

 ∞∫
r≥0

0(R≥ r |x,y,ζ )0(x,y|ζ )0(ζ ) dr


=

xmax∑
x=1

ymax∑
y=1

ζmax∑
ζ=1

∂

∂EF

0(x,y|ζ )0(ζ ) ∞∫
r≥0

0(R≥ r |x,y,ζ ) dr



=

xmax∑
x=1

ymax∑
y=1

ζmax∑
ζ=1



0(x,y|ζ )0(ζ )
∂

∂EF

∞∫
r≥0

0(R≥ r |x,y,ζ ) dr

+

∞∫
r≥0

0(R≥ r |x,y,ζ ) dr

×

[
0(x,y|ζ )

∂

∂EF
0(ζ )+0(ζ )

∂

∂EF
0(x,y|ζ )

]



=

xmax∑
x=1

ymax∑
y=1

ζmax∑
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 0(x,y|ζ )0(ζ )
∂

∂EF
E
[
R|x,y,ζ

]
+E

[
R|x,y,ζ

]
×

[
0(x,y|ζ )

∂

∂EF
0(ζ )+0(ζ )

∂

∂EF
0(x,y|ζ )

]


(4)

This allows us to define the amplification feedback strength (AFS) in an
analogous manner to the TFS:

AFS= σEF
∂E[r]
∂EF

(5)

where E[r] is the expected value of afternoon rainfall amount. The data used
in the AFS calculation are further limited to include only days when afternoon
rainfall does occur.

Normalized versions of the TFS and AFS are given by scaling the computed
derivatives by the ratio of the relevant mean values:

normTFS=
EF
0(r)

∂0(r)
∂EF

=
EF/0(r)
σEF

TFS (6)

Similarly,

normAFS=
EF
E[r]

∂E[r]
∂EF

=
EF/E[r]
σEF

AFS (7)
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